Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
The set Q consists of the following terms:
D1(t)
D1(constant)
D1(+2(x0, x1))
D1(*2(x0, x1))
D1(-2(x0, x1))
Q DP problem:
The TRS P consists of the following rules:
D11(*2(x, y)) -> D11(x)
D11(*2(x, y)) -> D11(y)
D11(+2(x, y)) -> D11(x)
D11(+2(x, y)) -> D11(y)
D11(-2(x, y)) -> D11(y)
D11(-2(x, y)) -> D11(x)
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
The set Q consists of the following terms:
D1(t)
D1(constant)
D1(+2(x0, x1))
D1(*2(x0, x1))
D1(-2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
D11(*2(x, y)) -> D11(x)
D11(*2(x, y)) -> D11(y)
D11(+2(x, y)) -> D11(x)
D11(+2(x, y)) -> D11(y)
D11(-2(x, y)) -> D11(y)
D11(-2(x, y)) -> D11(x)
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
The set Q consists of the following terms:
D1(t)
D1(constant)
D1(+2(x0, x1))
D1(*2(x0, x1))
D1(-2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
D11(*2(x, y)) -> D11(x)
D11(*2(x, y)) -> D11(y)
D11(+2(x, y)) -> D11(x)
D11(+2(x, y)) -> D11(y)
D11(-2(x, y)) -> D11(y)
D11(-2(x, y)) -> D11(x)
Used argument filtering: D11(x1) = x1
*2(x1, x2) = *2(x1, x2)
+2(x1, x2) = +2(x1, x2)
-2(x1, x2) = -2(x1, x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
D1(t) -> 1
D1(constant) -> 0
D1(+2(x, y)) -> +2(D1(x), D1(y))
D1(*2(x, y)) -> +2(*2(y, D1(x)), *2(x, D1(y)))
D1(-2(x, y)) -> -2(D1(x), D1(y))
The set Q consists of the following terms:
D1(t)
D1(constant)
D1(+2(x0, x1))
D1(*2(x0, x1))
D1(-2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.